View Single Post
  #307  
Old Posted Oct 23, 2013, 4:20 PM
amor de cosmos amor de cosmos is offline
BANNED
 
Join Date: Jun 2005
Location: lodged against an abutment
Posts: 7,556
Quote:
NTU scientists make breakthrough solar technology
Published on: 21-Oct-2013

In the near future, solar panels will not only be more efficient but also a lot cheaper and affordable for everyone, thanks to research by Nanyang Technological University (NTU) scientists.

This next generation solar cell, made from organic-inorganic hybrid perovskite materials, is about five times cheaper than current thin-film solar cells, due to a simpler solution-based manufacturing process.

Perovskite is known to be a remarkable solar cell material as it can convert up to 15 per cent of sunlight to electricity, close to the efficiency of the current solar cells, but scientists did not know why or how, until now.

In a paper published last Friday (18 Oct) in the world’s most prestigious academic journal, Science, NTU’s interdisciplinary research team was the first in the world to explain this phenomenon.
http://media.ntu.edu.sg/NewsReleases...7-72593de75029

Quote:
Predicting the life expectancy of solar modules
Research News Oct 01, 2013

Solar modules are exposed to many environmental influences that cause material to fatigue over the years. Researchers have developed a procedure to calculate effects of these influences over the long term. This allows reliable lifespan predictions.

People who invest in their own solar panels for the roof would like as a rule to profit from them over the long term – but how long will this technology actually last for? While most manufacturers guarantee a lifetime of up to 25 years to their customers, the manufacturers themselves cannot make reliable predictions about the expected operating life. The modules must fulfill certain standards, of course, to be approved for operation. This involves exposing them in various trials to high temperatures and high mechanical loading. “However, the results only predict something about the robustness of a brand-new sample with respect to extreme, short-term loading. In contrast, agerelated effects that only appear over the course of time, such as material fatigue, are pertinent for the actual operating life,” explains Alexander Fromm from the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg.
http://www.fraunhofer.de/en/press/re...modules-7.html

Quote:
Low-Priced Plastic Photovoltaics
Article in "The Journal of Chemical Physics" Describes New Approach to Making Cheaper, More Efficient Solar Panels

Released: 10/22/2013 11:05 AM EDT
Source Newsroom: American Institute of Physics (AIP)
more news from this source

Newswise — WASHINGTON, D.C. Oct. 22, 2013 -- Photovoltaic devices, which tap the power of the sun and convert it to electricity, offer a green -- and potentially unlimited -- alternative to fossil fuel use. So why haven’t solar technologies been more widely adopted?

Quite simply, "they’re too expensive," says Ji-Seon Kim, a senior lecturer in experimental solid-state physics at Imperial College London, who, along with her colleagues, has come up with a technology that might help bring the prices down.

The scientists describe their new approach to making cheaper, more efficient solar panels in a paper in The Journal of Chemical Physics, produced by AIP Publishing.

"To collect a lot of sunlight you need to cover a large area in solar panels, which is very expensive for traditional inorganic -- usually silicon -- photovoltaics," explains Kim. The high costs arise because traditional panels must be made from high purity crystals that require high temperatures and vacuum conditions to manufacture.
http://www.newswise.com/articles/low...-photovoltaics

Quote:
Amping Up Solar in the Snowy North
Released: 10/22/2013 10:25 AM EDT
Source Newsroom: Michigan Technological University
more news from this source

Newswise — Solar farms are a no-brainer in warm and sunny places, but what about in northern climes where snow can cover and even shut down the panels?

Michigan Technological University’s Keweenaw Research Center (KRC) is now part of a two-year study that will help answer that question. The aims are to gauge how snow affects solar panels’ power generation and determine the best ways to overcome any losses.

The international engineering firm DNV GL, which specializes in large energy- and sustainability-related projects, has built an array of solar photovoltaic panels behind KRC, each set at a different angle, from 0 degrees (flat) to 45 degrees. “If you tilt them at 60 degrees, almost no snow sticks to the panels, but you also lose a lot of sunlight when they are not facing the sky,” said Tim Townsend, a principal engineer for solar services with DNV GL.
http://www.newswise.com/articles/amp...he-snowy-north
Reply With Quote